Sains Malaysiana 54(1)(2025): 211-224

http://doi.org/10.17576/jsm-2025-5401-17

 

Enhanced Toxicity and Antifungal Effects of Iron-Oxide Chitosan/Samarium/Ranitidine Microparticles

(Sitotoksisiti Dipertingkatkan dan Kesan Antikulat bagi Zarah Mikro Kitosan/Samarium/Ranitidine Oksida Besi)

 

ENY KUSRINI1,2,3,*, KHAIRU NUZULA1, ANWAR USMAN4, LEE D. WILSON5, CINDY GUNAWAN6 & AGUS BUDI PRASETYO7

 

1Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, 16424, Indonesia
2Research Group of Green Product and Fine Chemical Engineering, Laboratory of Chemical Product Engineering, Department of Chemical Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
3Tropical Renewable Energy Research Center, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
4Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam

5Department of Chemistry, University of Saskatchewan 110 Science Place, Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
6ithree institute, University of Technology Sydney, Sydney, NSW 2007, Australia
7
Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST, BJ. Habibie, Puspitek Area, Setu, Tangerang Selatan, 15314, Indonesia

 

Diserahkan: 25 Jun 2024/Diterima: 30 Oktober 2024

 

Abstract

This study aimed to investigate the cytotoxicity and antifungal properties of Sm(NO3)3.6H2O salt, chitosan/Sm complex, iron oxide (Fe3O4 NPs), and iron-oxide modified chitosan/Sm/ranitidine microparticles. The microparticles of iron-oxide modified chitosan/Sm/ranitidine composites were synthesized from various masses of Sm(NO3)3.6H2O (250-350 mg), chitosan (2,000-2,500 mg), and (5-25 mg) through the microwave-assisted evaporation method. The Fe3O4 NPs and ranitidine/Sm were mixed with chitosan through a dispersion method by microwave. The toxicity studies of iron-oxide modified chitosan/Sm/ranitidine composites showed 50% lethal concentration in the range from 3,600 to 3,900 µg/mL on the aquatic crustacean Artemia salina, suggesting their slight toxicity. Antifungal activities for all samples were determined using the agar diffusion and serial dilution methods. The iron-oxide modified chitosan/Sm/ranitidine composites showed inhibition zone diameter of Aspergillus niger from 18.33 to 14.67 mm at 1,000 µg/mL. All composites and chitosan/Sm complex showed bioactivity properties with minimum inhibitory concentration values of 2.5 µg/mL against A. niger. These composites and chitosan/Sm complex have the same minimum fungicidal concentration, showing the potential to inhibit fungi. Overall results suggested that modifying the structure of chitosan using Sm3+, Fe3O4 NPs, and ranitidine enhanced its physical, chemical, and biological properties as an antifungal agent.

 

Keywords: Antifungal agent; cytotoxicity studies; iron-oxide modified chitosan/Sm/ranitidine microparticles; microwave-assisted evaporation

 

Abstract

Penyelidikan ini bertujuan untuk mengkaji sifat sitotoksisiti dan antikulat garam Sm(NO3)3.6H2O, kompleks kitosan/Sm, oksida besi (Fe3O4 NPs) dan zarah mikro kitosan/Sm/ranitidin terubah suai besi-oksida. Zarah mikro bagi komposit kitosan/Sm/ranitidine terubah suai besi-oksida telah disintesis daripada pelbagai jisim Sm(NO3)3.6H2O (250-350 mg), kitosan (2,000-2,500 mg) dan (5-25 mg) melalui kaedah penyejatan gelombang mikro-berbantu. NP Fe3O4 dan ranitidine/Sm dicampur dengan kitosan melalui kaedah serakan oleh gelombang mikro. Kajian sitotoksisiti bagi komposit kitosan/Sm/ranitidine terubah suai besi-oksida menunjukkan 50% kepekatan maut dalam julat dari 3,600 hingga 3,900 µg/mL pada krustasea akuatik Artemia salina yang menunjukkan sedikit ketoksikannya. Aktiviti antikulat untuk semua sampel ditentukan menggunakan kaedah penyebaran agar dan pencairan bersiri. Komposit kitosan/Sm/ranitidine terubah suai besi-oksida menunjukkan diameter zon perencatan Aspergillus niger daripada 18.33 hingga 14.67 mm pada 1,000 µg/mL. Semua komposit dan kompleks kitosan/Sm menunjukkan sifat bioaktiviti dengan nilai kepekatan perencatan minimum 2.5 µg/mL terhadap A. niger. Komposit dan kompleks kitosan/Sm ini mempunyai kepekatan racun kulat minimum yang sama yang menunjukkan potensi untuk menghalang kulat. Keputusan keseluruhan mencadangkan pengubahsuaian struktur kitosan menggunakan Sm3+, Fe3O4 NPs dan ranitidine meningkatkan sifat fizikal, kimia dan biologinya sebagai agen antikulat.

 

Kata kunci: Agen antikulat; kajian sitotoksisiti; mikro zarah kitosan/Sm/ranitidine terubah suai besi-oksida; penyejatan gelombang mikro-berbantu

 

RUJUKAN

Asrahwi, M.A., Rosman, N.A., Shahri, N.N.M., Santos, J.H., Kusrini, E., Thongratkaew, S., Faungnawakij, K., Hassan, S., Mahadi, A.H. & Usman A. 2023. Solid-state mechanochemical synthesis of chitosan from mud crab (Scylla serrata) chitin. Carbohydrate Research 534: 108971. https://doi.org/10.1016/j.carres.2023.108971

Balasubramanian, K.P., Karvembu, R., Prabhakaran, R., Chinnusamy, V. & Natarajan, K. 2007. Synthesis, spectral, catalytic and antimicrobial studies of PPh3/AsPh3 complexes of Ru(II) with dibasic tridentate O, N, S donor ligands. Spectrochimica Acta Part A 68: 50-54. https://doi.org/10.1016/j.saa.2006.10.049

Bhavyasree, P.G. & Xavier, T.S. 2020. Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon 6: e03323. https://doi.org/10.1016/j.heliyon.2020.e03323

Cota, I., Marturano, V. & Tylkowski, B. 2019. Ln complexes as double faced agents: Study of antibacterial and antifungal activity. Coordination Chemistry Reviews 396: 49-71. https://doi.org/10.1016/j.ccr.2019.05.019

Chandra, S. & Agrawal, S. 2014. Spectroscopic characterization of Lanthanoid derived from a hexadentate macrocyclic ligand: Study on antifungal capacity of complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124: 564-570. https://doi.org/10.1016/j.saa.2014.01.042

Devineni, S.R., Doddaga, S., Donka, R. & Chamarthi, N.R. 2013. CeCl3·7H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates. Chinese Chemical Letters 24: 759-763. https://doi.org/10.1016/j.cclet.2013.04.037

Hassani, S., Laouini, A., Fessi, H. & Charcosset, C. 2015. Preparation of chitosan–TPP nanoparticles using microengineered membranes - Effect of parameters and encapsulation of tacrine. Colloids and Surfaces A: Physicochemical and Engineering Aspects 482: 34-43. https://doi.org/10.1016/j.colsurfa.2015.04.006

Khezripour, A.R., Souri, D., Tavafi, H. & Ghabooli, M. 2019. Serial dilution bioassay for the detection of antibacterial potential of ZnSe quantum dots and their Fourier transform infra-red spectroscopy. Measurement 148: 106939. https://doi.org/10.1016/j.measurement.2019.106939

Kusrini, E., Alhamid, M.I., Wulandari, D.A., Fatkhurrahman, M., Shahrin, E.W.E.S., Shahri, N.N.M., Usman, A., Prasetyo, A.B., Sufyan, M., Rahman, A., Nugrahaningtyas, K.D. & Santosa, S.J. 2024. Simultaneous adsorption of multicomponent lanthanide ions on pectin encapsulated zeolite A. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy 11(01): 371-378. https://doi.org/10.5109/7172296

Kusrini, E., Safira, A.I., Usman, A., Prasetyanto, E.A., Nugrahaningtyas, K.D., Santosa, S.J. & Wilson, L.D. 2023a. Nanocomposites of terbium sulfide nanoparticles with a chitosan capping agent for antibacterial applications. Journal of Composites Science 7: 39. https://doi.org/10.3390/jcs7010039

Kusrini, E., Wilson, L.D., Padmosoedarso, K.M., Mawarni, D.P., Sufyan, M. & Usman, A. 2023b. Synthesis of chitosan capped zinc sulphide nanoparticle composites as an antibacterial agent for liquid handwash disinfectant applications. Journal of Composites Science 7: 52. https:// doi.org/10.3390/jcs7020052

Kusrini, E., Sabira, K., Hashim, F., Putra, N., Prasetyanto, E.A., Abdullah, N.A. & Usman, A. 2021. Design, synthesis, and antimicrobial activity of dysprosium-based nanoparticles using contact lenses as carrier against Acanthamoeba keratitis. Acta Ophthalmologica 99(2): e178-e188.  https://doi.org/10.1111/aos.14541

Kusrini, E., Hashim, F., Saleh, M.I., Adnan, R., Usman, A., Zakaria, I.N., Prihandini, W.W., Putra, N. & Prasetyanto, E.A. 2020. Monoclinic cerium(III) picrate tetraethylene glycol complex: Design, synthesis and biological evaluation as anti-amoebic activity against Acanthamoeba sp. Journal of Materials Science 55: 9795-9811.
https://doi.org/10.1007/s10853-020-04793-2

Kusrini, E., Hashim, F., Gunawan, C., Mann, R., Noor Azmi, W.N.N.W.N. & Amin, N.M. 2018. Anti-amoebic activity of acyclic and cyclic-samarium complexes on Acanthamoeba. Parasitology Research 117: 1409-1417. https://doi.org/10.1007/s00436-018-5814-x

Kusrini, E., Prassanti, R., Nurjaya, D.M. & Gunawan, C. 2017. Multifunctional microsphere formulation of fluorescent magnetic properties for drug delivery system. AIP Conference Proceedings 1817: 030011. https://doi.org/10.1063/1.4976780

Kusrini, E., Hashim, F., Noor Azmi, W.N.N.W., Amin, N.M. & Estuningtyas, A. 2016. A novel antiamoebic agent against Acanthamoeba sp. - A causative agent for eye keratitis infection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 153: 714-721. https://doi.org/10.1016/j.saa.2015.09.021

Kusrini, E., Arbianti, R., Sofyan, N., Abdullah, M.A.A. & Andriani, F. 2014. Modification of chitosan by using samarium for potential use in drug delivery system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120: 77-83. http://dx.doi.org/10.1016/j.saa.2013.09.132

Kusrini, E., Sofyan, N., Nurjaya, D.M., Santoso & Tristantini, D. 2013. Removal of heavy metals from aqueous solution by hydroxyapatite/chitosan composite. Advanced Materials Research 789: 176-179. https://doi.org/10.4028/www.scientific.net/AMR.789.176

Mayer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E. & McLaughin, J.L. 1982. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica 45(5): 31-34. https://doi.org/10.1055/s-2007-971236

Mimouni, M., Khardli, F.Z., Warad, I., Ahmad, M., Mubarak, M.S., Sultana, S. & Hadda, T.B. 2014. Antimicrobial activity of naturally occurring antibiotics monensin, lasalocid and their metal complexes. Journal of Materials Environmental Science 5(1): 207-214.

Mohanan, K., Kumari, B.S. & Rijulal, G. 2008. Microwave assisted synthesis, spectroscopic, thermal, and antifungal studies of some lanthanide(III) complexes with a heterocyclic bishydrazone. Journal of Rare Earths 26: 16-21. https://doi.org/10.1016/S1002-0721(08)60028-9

Momani, W.M.A., Taha, Z.A., Ajlouni, A.A.M., Shaqra, Q.M.A. & Zouby, M.A. 2012. A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand. Asian Pacific Journal of Tropical Biomedicine 3(5): 367-370. https://doi.org/10.1016/S2221-1691(13)60078-7

Nishat, N. & Malik, A. 2012. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals. Journal of Saudi Chemical Society 1319-1332. https://doi.org/10.1016/j.jscs.2012.07.017

Patel, M.P., Patel, R.R. & Patel, J.K. 2010. Chitosan mediated targeted drug delivery system: A review. Journal of Pharmacy & Pharmaceutical Sciences 13(3): 536-557. DOI: 10.18433/j3jc7c

Patil, S.K., Naik, V.M., Bilehal, D.C. & Mallur, N.B. 2011. Synthesis, spectral and antimicrobial studies of lanthanide (III) nitrate complexes with terdentate ONO donor hydrazones. Journal of Experimental Science 2(7): 15-20.

Peng, H., Liu, G., Dong, X., Wang, J., Yu, W. & Xu, J. 2012. Magnetic, luminescent and core–shell structured Fe3O4@YF3:Ce3+,Tb3+ bifunctional nanocomposites. Powder Technology  215-216: 242-246. https://doi.org/10.1016/j.powtec.2011.10.006

Qin, Y., Lia, P. & Guo, Z. 2020. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydrate Polymers 23615: 116002. https://doi.org/10.1016/j.carbpol.2020.116002

Rahdar, A., Aliahmad, M., Samani, M., Majd, M.H. & Susan, M.A.H. 2019. Synthesis and characterization of highly efficacious Fe-doped ceria nanoparticles for cytotoxic and antifungal activity. Ceramics Internasional 45: 7950-7955. https://doi.org/10.1016/j.ceramint.2019.01.108

Rosman, N.A., Asrahwi, M.A., Narudin, N.A.H., Sahid, M.S.M., Dewi, R., Shamsuddin, N., Roil Bilad, M., Kusrini, E., Hobley, J. & Usman, A. 2023. Chitin and chitosan: Isolation, deacetylation, and prospective biomedical, cosmetic, and food applications. In Advanced Materials towards Energy Sustainability. Boca Raton: CRC Press. pp. 129-150. https://doi.org/10.1201/9781003367819-7

Rouis, Z., Abid, N., Koudja, S., Yangui, T., Elaissi, A., Cioni, P.L., Flamini, G. & Aouni, M. 2013. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia. BMC Complementary and Alternative Medicine 13: 24. https://doi.org/10.1186/1472-6882-13-24

Shahri, N.N.M., Taha, H., Hamid, M.H.S.A., Kusrini, E., Lim, J-W., Hobley, J. & Usman, A. 2022. Antimicrobial activity of silver sulfide quantum dots functionalized with highly conjugated Schiff bases in a one-step synthesis. RSC Advances 12: 3136-3146. https://doi.org/10.1039/D1RA08296E

Sivaraj, R., Rahman, P.K.S.M., Rajiv, P., Narendhran, S. & Venckatesh, R. 2014. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and their evaluation of its antimicrobial and anticancer activity. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 129: 255-258. https://doi.org/10.1016/j.saa.2014.03.027

Thanou, M., Verhoef, J.C. & Junginger, H.E. 2001. Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews 52(2): 117-126.
https://doi.org/10.1016/S0169-409X(01)00231-9

Usman, A., Kusrini, E., Wilson L.D., Santos, J.H. & Nur, M. 2024. Chapter 9: Chitosan and chitosan-based nanomaterials in decontamination of pharmaceutical waste. In Chitosan-Based Hybrid Nanomaterials, Emerging Applications of Chitosan-Based Nanomaterial, 1st ed., edited by Ali, N., Bilal, M., Khan, A., Nguyen, T.A. Elsevier. pp. 153-180. https://doi.org/10.1016/B978-0-443-21891-0.00009-3

Usman, A., Kusrini, E., Widiantoro, A.B., Hardiya, E., Abdullah, N.A. & Yulizar, Y. 2018.  Fabrication of chitosan nanoparticles containing samarium ion potentially applicable for fluorescence detection and energy transfer. International Journal of Technology 9(6): 1112-1120. https://doi.org/10.14716/ijtech.v9i6.2576

Wang, W., Xiangpeng, J. & Kezheng, C. 2011. Lanthanide-doped chitosan nanospheres as cell nuclei illuminator and fluorescent nonviral vector for plasmid DNA delivery. Dalton Transactions 41: 490-497. https://doi.org/10.1039/C1DT11200G

Wibowo, A., Jatmiko, A., Ananda, M.B., Rachmawati, S.A., Ardy, H., Aimon, A.H. & Iskandar, F. 2021. Facile fabrication of polyelectrolyte complex nanoparticles based on chitosan – poly-2-acrylamido-2-methylpropane sulfonic acid as a potential drug carrier material. International Journal of Technology 12(3): 561-570. https://doi.org/10.14716/ijtech.v12i3.4193

Zhao, Y., Qiu, Z. & Huang, J. 2008. Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chinese Journal of Chemical Engineering 16: 451-455. https://doi.org/10.1016/S1004-9541(08)60104-4

 

*Pengarang untuk surat-menyurat; email: eny.k@ui.ac.id (EK)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya